NETGeographicLib::GeodesicLine Class Reference

.NET wrapper for GeographicLib::GeodesicLine. More...

#include <NETGeographicLib/GeodesicLine.h>

List of all members.

Public Member Functions

 ~GeodesicLine ()
Constructors



 GeodesicLine (Geodesic^ g, double lat1, double lon1, double azi1, NETGeographicLib::Mask caps)
 GeodesicLine (double lat1, double lon1, double azi1, NETGeographicLib::Mask caps)
Position in terms of distance



double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21,[System::Runtime::InteropServices::Out] double% S12)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% m12)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
Position in terms of arc length



void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21,[System::Runtime::InteropServices::Out] double% S12)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
The general position function.



double GenPosition (bool arcmode, double s12_a12, NETGeographicLib::Mask outmask,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21,[System::Runtime::InteropServices::Out] double% S12)

Inspector functions



double Latitude [get]
double Longitude [get]
double Azimuth [get]
double EquatorialAzimuth [get]
double EquatorialArc [get]
double MajorRadius [get]
double Flattening [get]
NETGeographicLib::Mask Capabilities ()
bool Capabilities (NETGeographicLib::Mask testcaps)

Detailed Description

.NET wrapper for GeographicLib::GeodesicLine.

This class allows .NET applications to access GeographicLib::GeodesicLine.

GeodesicLine facilitates the determination of a series of points on a single geodesic. The starting point (lat1, lon1) and the azimuth azi1 are specified in the constructor. GeodesicLine.Position returns the location of point 2 a distance s12 along the geodesic. Alternatively GeodesicLine.ArcPosition gives the position of point 2 an arc length a12 along the geodesic.

The default copy constructor and assignment operators work with this class. Similarly, a vector can be used to hold GeodesicLine objects.

The calculations are accurate to better than 15 nm (15 nanometers). See Sec. 9 of arXiv:1102.1215v1 for details. The algorithms used by this class are based on series expansions using the flattening f as a small parameter. These are only accurate for |f| < 0.02; however reasonably accurate results will be obtained for |f| < 0.2. For very eccentric ellipsoids, use GeodesicLineExact instead.

The algorithms are described in

For more information on geodesics see Geodesics on an ellipsoid of revolution.

C# Example:

using System;
using NETGeographicLib;

namespace example_GeodesicLine
{
    class Program
    {
        static void Main(string[] args)
        {
            try
            {
                // Print waypoints between JFK and SIN
                Geodesic geod = new Geodesic(); // WGS84
                double
                    lat1 = 40.640, lon1 = -73.779, // JFK
                    lat2 = 1.359, lon2 = 103.989; // SIN
                double s12, azi1, azi2,
                    a12 = geod.Inverse(lat1, lon1, lat2, lon2, out s12, out azi1, out azi2);
                GeodesicLine line = new GeodesicLine(geod, lat1, lon1, azi1, Mask.ALL);
                // Alternatively GeodesicLine line = geod.Line(lat1, lon1, azi1, Mask.ALL);
                double ds = 500e3;          // Nominal distance between points = 500 km
                int num = (int)(Math.Ceiling(s12 / ds)); // The number of intervals
                {
                    // Use intervals of equal length
                    ds = s12 / num;
                    for (int i = 0; i <= num; ++i)
                    {
                        double lat, lon;
                        line.Position(i * ds, out lat, out lon);
                        Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon));
                    }
                }
                {
                    // Slightly faster, use intervals of equal arc length
                    double da = a12 / num;
                    for (int i = 0; i <= num; ++i)
                    {
                        double lat, lon;
                        line.ArcPosition(i * da, out lat, out lon);
                        Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon));
                    }
                }
            }
            catch (GeographicErr e)
            {
                Console.WriteLine(String.Format("Caught exception: {0}", e.Message));
            }
        }
    }
}

Managed C++ Example:

using namespace System;
using namespace NETGeographicLib;

int main(array<System::String ^> ^/*args*/)
{
    try {
        // Print waypoints between JFK and SIN
        Geodesic^ geod = gcnew Geodesic(); // WGS84
        double
            lat1 = 40.640, lon1 = -73.779, // JFK
            lat2 =  1.359, lon2 = 103.989; // SIN
        double s12, azi1, azi2,
            a12 = geod->Inverse(lat1, lon1, lat2, lon2, s12, azi1, azi2);
        GeodesicLine^ line = gcnew GeodesicLine(geod, lat1, lon1, azi1, Mask::ALL);
        // Alternatively
        // const GeographicLib::GeodesicLine line = geod.Line(lat1, lon1, azi1);
        double ds = 500e3;          // Nominal distance between points = 500 km
        int num = int(Math::Ceiling(s12 / ds)); // The number of intervals
        {
            // Use intervals of equal length
            double ds = s12 / num;
            for (int i = 0; i <= num; ++i) {
                double lat, lon;
                line->Position(i * ds, lat, lon);
                Console::WriteLine( String::Format( "i: {0} Latitude: {1} Longitude: {2}", i, lat, lon ));
            }
        }
        {
            // Slightly faster, use intervals of equal arc length
            double da = a12 / num;
            for (int i = 0; i <= num; ++i) {
                double lat, lon;
                line->ArcPosition(i * da, lat, lon);
                Console::WriteLine( String::Format( "i: {0} Latitude: {1} Longitude: {2}", i, lat, lon ));
            }
        }
    }
    catch (GeographicErr^ e) {
        Console::WriteLine(String::Format("Caught exception: {0}", e->Message));
        return -1;
    }
    return 0;
}

Visual Basic Example:

Imports NETGeographicLib

Module example_GeodesicLine
    Sub Main()
        Try
            ' Print waypoints between JFK and SIN
            Dim geod As Geodesic = New Geodesic() ' WGS84
            Dim lat1 As Double = 40.64, lon1 = -73.779 ' JFK
            Dim lat2 As Double = 1.359, lon2 = 103.989 ' SIN
            Dim s12, azi1, azi2 As Double
            Dim a12 As Double = geod.Inverse(lat1, lon1, lat2, lon2, s12, azi1, azi2)
            Dim line As GeodesicLine = New GeodesicLine(geod, lat1, lon1, azi1, Mask.ALL)
            ' Alternatively Dim line As GeodesicLineExact = geod.Line(lat1, lon1, azi1, Mask.ALL)
            Dim ds As Double = 500000.0 ' Nominal distance between points = 500 km
            Dim num As Integer = CInt(Math.Ceiling(s12 / ds)) ' The number of intervals
            ' Use intervals of equal length
            ds = s12 / num
            For i As Integer = 0 To num
                Dim lat, lon As Double
                line.Position(i * ds, lat, lon)
                Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon))
            Next
            ' Slightly faster, use intervals of equal arc length
            Dim da As Double = a12 / num
            For i As Integer = 0 To num
                Dim lat, lon As Double
                line.ArcPosition(i * da, lat, lon)
                Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon))
            Next
        Catch ex As GeographicErr
            Console.WriteLine(String.Format("Caught exception: {0}", ex.Message))
        End Try
    End Sub
End Module

INTERFACE DIFFERENCES:
A constructor has been provided which assumes WGS84 parameters.

The following functions are implemented as properties: Latitude, Longitude, Azimuth, EquatorialAzimuth, EquatorialArc, MajorRadius, and Flattening.

The constructors, Capabilities, and GenPosition functions accept the "capabilities mask" as a NETGeographicLib::Mask rather than an unsigned. The Capabilities function returns a NETGeographicLib::Mask rather than an unsigned.

Definition at line 71 of file GeodesicLine.h.


Constructor & Destructor Documentation

NETGeographicLib::GeodesicLine::GeodesicLine ( Geodesic^   g,
double  lat1,
double  lon1,
double  azi1,
NETGeographicLib::Mask  caps 
)

Constructor for a geodesic line staring at latitude lat1, longitude lon1, and azimuth azi1 (all in degrees).

Parameters:
[in] g A Geodesic object used to compute the necessary information about the GeodesicLine.
[in] lat1 latitude of point 1 (degrees).
[in] lon1 longitude of point 1 (degrees).
[in] azi1 azimuth at point 1 (degrees).
[in] caps bitor'ed combination of NETGeographicLib::Mask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to GeodesicLine::Position.

lat1 should be in the range [90, 90]; lon1 and azi1 should be in the range [540, 540).

The NETGeographicLib::Mask values are

  • caps |= GeodesicLine::LATITUDE for the latitude lat2; this is added automatically;
  • caps |= GeodesicLine::LONGITUDE for the latitude lon2;
  • caps |= GeodesicLine::AZIMUTH for the latitude azi2; this is added automatically;
  • caps |= GeodesicLine::DISTANCE for the distance s12;
  • caps |= GeodesicLine::REDUCEDLENGTH for the reduced length m12;
  • caps |= GeodesicLine::GEODESICSCALE for the geodesic scales M12 and M21;
  • caps |= GeodesicLine::AREA for the area S12;
  • caps |= GeodesicLine::DISTANCE_IN permits the length of the geodesic to be given in terms of s12; without this capability the length can only be specified in terms of arc length;
  • caps |= GeodesicLine::ALL for all of the above.

The default value of caps is GeodesicLine::ALL.

If the point is at a pole, the azimuth is defined by keeping lon1 fixed, writing lat1 = (90 ), and taking the limit 0+.

Referenced by ~GeodesicLine().

NETGeographicLib::GeodesicLine::GeodesicLine ( double  lat1,
double  lon1,
double  azi1,
NETGeographicLib::Mask  caps 
)

A constructor which assumes the WGS84 ellipsoid.

NETGeographicLib::GeodesicLine::~GeodesicLine (  )  [inline]

The destructor calls the finalizer.

Definition at line 136 of file GeodesicLine.h.

References GeodesicLine().


Member Function Documentation

double NETGeographicLib::GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21,
[System::Runtime::InteropServices::Out] double%   S12 
)

Compute the position of point 2 which is a distance s12 (meters) from point 1.

Parameters:
[in] s12 distance between point 1 and point 2 (meters); it can be negative.
[out] lat2 latitude of point 2 (degrees).
[out] lon2 longitude of point 2 (degrees); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::LONGITUDE.
[out] azi2 (forward) azimuth at point 2 (degrees).
[out] m12 reduced length of geodesic (meters); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::REDUCEDLENGTH.
[out] M12 geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::GEODESICSCALE.
[out] M21 geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::GEODESICSCALE.
[out] S12 area under the geodesic (meters2); requires that the GeodesicLine object was constructed with caps |= GeodesicLine::AREA.
Returns:
a12 arc length of between point 1 and point 2 (degrees).

The values of lon2 and azi2 returned are in the range [180, 180).

The GeodesicLine object must have been constructed with caps |= GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no parameters are set. Requesting a value which the GeodesicLine object is not capable of computing is not an error; the corresponding argument will not be altered.

The following functions are overloaded versions of GeodesicLine::Position which omit some of the output parameters. Note, however, that the arc length is always computed and returned as the function value.

double NETGeographicLib::GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2 
)

See the documentation for GeodesicLine::Position.

double NETGeographicLib::GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2 
)

See the documentation for GeodesicLine::Position.

double NETGeographicLib::GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   m12 
)

See the documentation for GeodesicLine::Position.

double NETGeographicLib::GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLine::Position.

double NETGeographicLib::GeodesicLine::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLine::Position.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21,
[System::Runtime::InteropServices::Out] double%   S12 
)

Compute the position of point 2 which is an arc length a12 (degrees) from point 1.

Parameters:
[in] a12 arc length between point 1 and point 2 (degrees); it can be negative.
[out] lat2 latitude of point 2 (degrees).
[out] lon2 longitude of point 2 (degrees); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::LONGITUDE.
[out] azi2 (forward) azimuth at point 2 (degrees).
[out] s12 distance between point 1 and point 2 (meters); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::DISTANCE.
[out] m12 reduced length of geodesic (meters); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::REDUCEDLENGTH.
[out] M12 geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::GEODESICSCALE.
[out] M21 geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::GEODESICSCALE.
[out] S12 area under the geodesic (meters2); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::AREA.

The values of lon2 and azi2 returned are in the range [180, 180).

Requesting a value which the GeodesicLine object is not capable of computing is not an error; the corresponding argument will not be altered.

The following functions are overloaded versions of GeodesicLine::ArcPosition which omit some of the output parameters.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2 
)

See the documentation for GeodesicLine::ArcPosition.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2 
)

See the documentation for GeodesicLine::ArcPosition.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12 
)

See the documentation for GeodesicLine::ArcPosition.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12 
)

See the documentation for GeodesicLine::ArcPosition.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLine::ArcPosition.

void NETGeographicLib::GeodesicLine::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLine::ArcPosition.

double NETGeographicLib::GeodesicLine::GenPosition ( bool  arcmode,
double  s12_a12,
NETGeographicLib::Mask  outmask,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21,
[System::Runtime::InteropServices::Out] double%   S12 
)

The general position function. GeodesicLine::Position and GeodesicLine::ArcPosition are defined in terms of this function.

Parameters:
[in] arcmode boolean flag determining the meaning of the second parameter; if arcmode is false, then the GeodesicLine object must have been constructed with caps |= GeodesicLine::DISTANCE_IN.
[in] s12_a12 if arcmode is false, this is the distance between point 1 and point 2 (meters); otherwise it is the arc length between point 1 and point 2 (degrees); it can be negative.
[in] outmask a bitor'ed combination of NETGeographicLib::Mask values specifying which of the following parameters should be set.
[out] lat2 latitude of point 2 (degrees).
[out] lon2 longitude of point 2 (degrees); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::LONGITUDE.
[out] azi2 (forward) azimuth at point 2 (degrees).
[out] s12 distance between point 1 and point 2 (meters); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::DISTANCE.
[out] m12 reduced length of geodesic (meters); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::REDUCEDLENGTH.
[out] M12 geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::GEODESICSCALE.
[out] M21 geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::GEODESICSCALE.
[out] S12 area under the geodesic (meters2); requires that the GeodesicLine object was constructed with caps |= NETGeographicLib::Mask::AREA.
Returns:
a12 arc length of between point 1 and point 2 (degrees).

The GeodesicLine::mask values possible for outmask are

  • outmask |= NETGeographicLib::Mask::LATITUDE for the latitude lat2;
  • outmask |= NETGeographicLib::Mask::LONGITUDE for the latitude lon2;
  • outmask |= NETGeographicLib::Mask::AZIMUTH for the latitude azi2;
  • outmask |= NETGeographicLib::Mask::DISTANCE for the distance s12;
  • outmask |= NETGeographicLib::Mask::REDUCEDLENGTH for the reduced length m12;
  • outmask |= NETGeographicLib::Mask::GEODESICSCALE for the geodesic scales M12 and M21;
  • outmask |= NETGeographicLib::Mask::AREA for the area S12;
  • outmask |= NETGeographicLib::Mask::ALL for all of the above.

Requesting a value which the GeodesicLine object is not capable of computing is not an error; the corresponding argument will not be altered. Note, however, that the arc length is always computed and returned as the function value.

NETGeographicLib::Mask NETGeographicLib::GeodesicLine::Capabilities (  ) 
Returns:
caps the computational capabilities that this object was constructed with. LATITUDE and AZIMUTH are always included.
bool NETGeographicLib::GeodesicLine::Capabilities ( NETGeographicLib::Mask  testcaps  ) 
Parameters:
[in] testcaps a set of bitor'ed GeodesicLine::mask values.
Returns:
true if the GeodesicLine object has all these capabilities.

Property Documentation

double NETGeographicLib::GeodesicLine::Latitude [get]
Returns:
lat1 the latitude of point 1 (degrees).

Definition at line 422 of file GeodesicLine.h.

double NETGeographicLib::GeodesicLine::Longitude [get]
Returns:
lon1 the longitude of point 1 (degrees).

Definition at line 427 of file GeodesicLine.h.

double NETGeographicLib::GeodesicLine::Azimuth [get]
Returns:
azi1 the azimuth (degrees) of the geodesic line at point 1.

Definition at line 432 of file GeodesicLine.h.

double NETGeographicLib::GeodesicLine::EquatorialAzimuth [get]
Returns:
azi0 the azimuth (degrees) of the geodesic line as it crosses the equator in a northward direction.

Definition at line 438 of file GeodesicLine.h.

double NETGeographicLib::GeodesicLine::EquatorialArc [get]
Returns:
a1 the arc length (degrees) between the northward equatorial crossing and point 1.

Definition at line 444 of file GeodesicLine.h.

double NETGeographicLib::GeodesicLine::MajorRadius [get]
Returns:
a the equatorial radius of the ellipsoid (meters). This is the value inherited from the Geodesic object used in the constructor.

Definition at line 450 of file GeodesicLine.h.

double NETGeographicLib::GeodesicLine::Flattening [get]
Returns:
f the flattening of the ellipsoid. This is the value inherited from the Geodesic object used in the constructor.

Definition at line 456 of file GeodesicLine.h.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends

Generated on 6 Oct 2014 for NETGeographicLib by  doxygen 1.6.1