NETGeographicLib::GeodesicLineExact Class Reference

.NET wrapper for GeographicLib::GeodesicLineExact. More...

#include <NETGeographicLib/GeodesicLineExact.h>

List of all members.

Public Member Functions

 ~GeodesicLineExact ()
Constructors



 GeodesicLineExact (GeodesicExact^ g, double lat1, double lon1, double azi1, NETGeographicLib::Mask caps)
 GeodesicLineExact (double lat1, double lon1, double azi1, NETGeographicLib::Mask caps)
Position in terms of distance



double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21,[System::Runtime::InteropServices::Out] double% S12)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% m12)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
double Position (double s12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
Position in terms of arc length



void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21,[System::Runtime::InteropServices::Out] double% S12)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
void ArcPosition (double a12,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21)
The general position function.



double GenPosition (bool arcmode, double s12_a12, NETGeographicLib::Mask outmask,[System::Runtime::InteropServices::Out] double% lat2,[System::Runtime::InteropServices::Out] double% lon2,[System::Runtime::InteropServices::Out] double% azi2,[System::Runtime::InteropServices::Out] double% s12,[System::Runtime::InteropServices::Out] double% m12,[System::Runtime::InteropServices::Out] double% M12,[System::Runtime::InteropServices::Out] double% M21,[System::Runtime::InteropServices::Out] double% S12)

Inspector functions



double Latitude [get]
double Longitude [get]
double Azimuth [get]
double EquatorialAzimuth [get]
double EquatorialArc [get]
double MajorRadius [get]
double Flattening [get]
NETGeographicLib::Mask Capabilities ()
bool Capabilities (NETGeographicLib::Mask testcaps)

Detailed Description

.NET wrapper for GeographicLib::GeodesicLineExact.

This class allows .NET applications to access GeographicLib::GeodesicLineExact.

GeodesicLineExact facilitates the determination of a series of points on a single geodesic. This is a companion to the GeodesicExact class. For additional information on this class see the documentation on the GeodesicLine class.

C# Example:

using System;
using NETGeographicLib;

namespace example_GeodesicLineExact
{
    class Program
    {
        static void Main(string[] args)
        {
            try {
                // Print waypoints between JFK and SIN
                GeodesicExact geod = new GeodesicExact(); // WGS84
                double
                    lat1 = 40.640, lon1 = -73.779, // JFK
                    lat2 =  1.359, lon2 = 103.989; // SIN
                double s12, azi1, azi2,
                    a12 = geod.Inverse(lat1, lon1, lat2, lon2, out s12, out azi1, out azi2);
                GeodesicLineExact line = new GeodesicLineExact(geod, lat1, lon1, azi1, Mask.ALL);
                // Alternatively GeodesicLine line = geod.Line(lat1, lon1, azi1, Mask.ALL);
                double ds = 500e3;          // Nominal distance between points = 500 km
                int num = (int)(Math.Ceiling(s12 / ds)); // The number of intervals
                {
                    // Use intervals of equal length
                    ds = s12 / num;
                    for (int i = 0; i <= num; ++i) {
                        double lat, lon;
                        line.Position(i * ds, out lat, out lon);
                        Console.WriteLine( String.Format( "i: {0} Latitude: {1} Longitude: {2}", i, lat, lon ));
                    }
                }
                {
                    // Slightly faster, use intervals of equal arc length
                    double da = a12 / num;
                    for (int i = 0; i <= num; ++i) {
                        double lat, lon;
                        line.ArcPosition(i * da, out lat, out lon);
                        Console.WriteLine( String.Format( "i: {0} Latitude: {1} Longitude: {2}", i, lat, lon ));
                    }
                }
            }
            catch (GeographicErr e) {
                Console.WriteLine(String.Format("Caught exception: {0}", e.Message));
            }
        }
    }
}

Managed C++ Example:

using namespace System;
using namespace NETGeographicLib;

int main(array<System::String ^> ^/*args*/)
{
    try {
        // Print waypoints between JFK and SIN
        GeodesicExact^ geod = gcnew GeodesicExact(); // WGS84
        double
            lat1 = 40.640, lon1 = -73.779, // JFK
            lat2 =  1.359, lon2 = 103.989; // SIN
        double s12, azi1, azi2,
            a12 = geod->Inverse(lat1, lon1, lat2, lon2, s12, azi1, azi2);
        GeodesicLineExact^ line = gcnew GeodesicLineExact(geod, lat1, lon1, azi1, Mask::ALL);
        // Alternatively
        // const GeographicLib::GeodesicLine line = geod.Line(lat1, lon1, azi1);
        double ds = 500e3;          // Nominal distance between points = 500 km
        int num = int(Math::Ceiling(s12 / ds)); // The number of intervals
        {
            // Use intervals of equal length
            double ds = s12 / num;
            for (int i = 0; i <= num; ++i) {
                double lat, lon;
                line->Position(i * ds, lat, lon);
                Console::WriteLine( String::Format( "i: {0} Latitude: {1} Longitude: {2}", i, lat, lon ));
            }
        }
        {
            // Slightly faster, use intervals of equal arc length
            double da = a12 / num;
            for (int i = 0; i <= num; ++i) {
                double lat, lon;
                line->ArcPosition(i * da, lat, lon);
                Console::WriteLine( String::Format( "i: {0} Latitude: {1} Longitude: {2}", i, lat, lon ));
            }
        }
    }
    catch (GeographicErr^ e) {
        Console::WriteLine(String::Format("Caught exception: {0}", e->Message));
        return -1;
    }
    return 0;
}

Visual Basic Example:

Imports NETGeographicLib

Module example_GeodesicLineExact
    Sub Main()
        Try
            ' Print waypoints between JFK and SIN
            Dim geod As GeodesicExact = New GeodesicExact() ' WGS84
            Dim lat1 As Double = 40.64, lon1 = -73.779 ' JFK
            Dim lat2 As Double = 1.359, lon2 = 103.989 ' SIN
            Dim s12, azi1, azi2 As Double
            Dim a12 As Double = geod.Inverse(lat1, lon1, lat2, lon2, s12, azi1, azi2)
            Dim line As GeodesicLineExact = New GeodesicLineExact(geod, lat1, lon1, azi1, Mask.ALL)
            ' Alternatively Dim line As GeodesicLineExact = geod.Line(lat1, lon1, azi1, Mask.ALL)
            Dim ds As Double = 500000.0 ' Nominal distance between points = 500 km
            Dim num As Integer = CInt(Math.Ceiling(s12 / ds)) ' The number of intervals
            ' Use intervals of equal length
            ds = s12 / num
            For i As Integer = 0 To num
                Dim lat, lon As Double
                line.Position(i * ds, lat, lon)
                Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon))
            Next
            ' Slightly faster, use intervals of equal arc length
            Dim da As Double = a12 / num
            For i As Integer = 0 To num
                Dim lat, lon As Double
                line.ArcPosition(i * da, lat, lon)
                Console.WriteLine(String.Format("i: {0} Latitude: {1} Longitude: {2}", i, lat, lon))
            Next
        Catch ex As GeographicErr
            Console.WriteLine(String.Format("Caught exception: {0}", ex.Message))
        End Try
    End Sub
End Module

INTERFACE DIFFERENCES:
A constructor has been provided that assumes WGS84 parameters.

The following functions are implemented as properties: Latitude, Longitude, Azimuth, EquatorialAzimuth, EquatorialArc, MajorRadius, and Flattening.

The constructors, GenPosition, and Capabilities functions accept the "capabilities mask" as a NETGeographicLib::Mask rather than an unsigned. The Capabilities function returns a NETGeographicLib::Mask rather than an unsigned.

Definition at line 46 of file GeodesicLineExact.h.


Constructor & Destructor Documentation

NETGeographicLib::GeodesicLineExact::GeodesicLineExact ( GeodesicExact^   g,
double  lat1,
double  lon1,
double  azi1,
NETGeographicLib::Mask  caps 
)

Constructor for a geodesic line staring at latitude lat1, longitude lon1, and azimuth azi1 (all in degrees).

Parameters:
[in] g A GeodesicExact object used to compute the necessary information about the GeodesicLineExact.
[in] lat1 latitude of point 1 (degrees).
[in] lon1 longitude of point 1 (degrees).
[in] azi1 azimuth at point 1 (degrees).
[in] caps bitor'ed combination of NETGeographicLib::Mask values specifying the capabilities the GeodesicLineExact object should possess, i.e., which quantities can be returned in calls to GeodesicLine::Position.

lat1 should be in the range [90, 90]; lon1 and azi1 should be in the range [540, 540).

The NETGeographicLib::Mask values are

  • caps |= GeodesicLineExact::LATITUDE for the latitude lat2; this is added automatically;
  • caps |= NETGeographicLib::Mask::LONGITUDE for the latitude lon2;
  • caps |= NETGeographicLib::Mask::AZIMUTH for the latitude azi2; this is added automatically;
  • caps |= NETGeographicLib::Mask::DISTANCE for the distance s12;
  • caps |= NETGeographicLib::Mask::REDUCEDLENGTH for the reduced length m12;
  • caps |= NETGeographicLib::Mask::GEODESICSCALE for the geodesic scales M12 and M21;
  • caps |= NETGeographicLib::Mask::AREA for the area S12;
  • caps |= NETGeographicLib::Mask::DISTANCE_IN permits the length of the geodesic to be given in terms of s12; without this capability the length can only be specified in terms of arc length;
  • caps |= NETGeographicLib::Mask::ALL for all of the above.

If the point is at a pole, the azimuth is defined by keeping lon1 fixed, writing lat1 = (90 ), and taking the limit 0+.

Referenced by ~GeodesicLineExact().

NETGeographicLib::GeodesicLineExact::GeodesicLineExact ( double  lat1,
double  lon1,
double  azi1,
NETGeographicLib::Mask  caps 
)

A default constructor which assumes the WGS84 ellipsoid. See constructor comments for details.

NETGeographicLib::GeodesicLineExact::~GeodesicLineExact (  )  [inline]

The destructor calls the finalizer

Definition at line 113 of file GeodesicLineExact.h.

References GeodesicLineExact().


Member Function Documentation

double NETGeographicLib::GeodesicLineExact::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21,
[System::Runtime::InteropServices::Out] double%   S12 
)

Compute the position of point 2 which is a distance s12 (meters) from point 1.

Parameters:
[in] s12 distance between point 1 and point 2 (meters); it can be signed.
[out] lat2 latitude of point 2 (degrees).
[out] lon2 longitude of point 2 (degrees); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::LONGITUDE.
[out] azi2 (forward) azimuth at point 2 (degrees).
[out] m12 reduced length of geodesic (meters); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::REDUCEDLENGTH.
[out] M12 geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::GEODESICSCALE.
[out] M21 geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::GEODESICSCALE.
[out] S12 area under the geodesic (meters2); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::AREA.
Returns:
a12 arc length of between point 1 and point 2 (degrees).

The values of lon2 and azi2 returned are in the range [180, 180).

The GeodesicLineExact object must have been constructed with caps |= GeodesicLineExact::DISTANCE_IN; otherwise Math::NaN() is returned and no parameters are set. Requesting a value which the GeodesicLineExact object is not capable of computing is not an error; the corresponding argument will not be altered.

The following functions are overloaded versions of GeodesicLineExact::Position which omit some of the output parameters. Note, however, that the arc length is always computed and returned as the function value.

double NETGeographicLib::GeodesicLineExact::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2 
)

See the documentation for GeodesicLineExact::Position.

double NETGeographicLib::GeodesicLineExact::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2 
)

See the documentation for GeodesicLineExact::Position.

double NETGeographicLib::GeodesicLineExact::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   m12 
)

See the documentation for GeodesicLineExact::Position.

double NETGeographicLib::GeodesicLineExact::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLineExact::Position.

double NETGeographicLib::GeodesicLineExact::Position ( double  s12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLineExact::Position.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21,
[System::Runtime::InteropServices::Out] double%   S12 
)

Compute the position of point 2 which is an arc length a12 (degrees) from point 1.

Parameters:
[in] a12 arc length between point 1 and point 2 (degrees); it can be signed.
[out] lat2 latitude of point 2 (degrees).
[out] lon2 longitude of point 2 (degrees); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::LONGITUDE.
[out] azi2 (forward) azimuth at point 2 (degrees).
[out] s12 distance between point 1 and point 2 (meters); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::DISTANCE.
[out] m12 reduced length of geodesic (meters); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::REDUCEDLENGTH.
[out] M12 geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::GEODESICSCALE.
[out] M21 geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::GEODESICSCALE.
[out] S12 area under the geodesic (meters2); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::AREA.

The values of lon2 and azi2 returned are in the range [180, 180).

Requesting a value which the GeodesicLineExact object is not capable of computing is not an error; the corresponding argument will not be altered.

The following functions are overloaded versions of GeodesicLineExact::ArcPosition which omit some of the output parameters.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2 
)

See the documentation for GeodesicLineExact::ArcPosition.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2 
)

See the documentation for GeodesicLineExact::ArcPosition.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12 
)

See the documentation for GeodesicLineExact::ArcPosition.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12 
)

See the documentation for GeodesicLineExact::ArcPosition.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLineExact::ArcPosition.

void NETGeographicLib::GeodesicLineExact::ArcPosition ( double  a12,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21 
)

See the documentation for GeodesicLineExact::ArcPosition.

double NETGeographicLib::GeodesicLineExact::GenPosition ( bool  arcmode,
double  s12_a12,
NETGeographicLib::Mask  outmask,
[System::Runtime::InteropServices::Out] double%   lat2,
[System::Runtime::InteropServices::Out] double%   lon2,
[System::Runtime::InteropServices::Out] double%   azi2,
[System::Runtime::InteropServices::Out] double%   s12,
[System::Runtime::InteropServices::Out] double%   m12,
[System::Runtime::InteropServices::Out] double%   M12,
[System::Runtime::InteropServices::Out] double%   M21,
[System::Runtime::InteropServices::Out] double%   S12 
)

The general position function. GeodesicLineExact::Position and GeodesicLineExact::ArcPosition are defined in terms of this function.

Parameters:
[in] arcmode boolean flag determining the meaning of the second parameter; if arcmode is false, then the GeodesicLineExact object must have been constructed with caps |= GeodesicLineExact::DISTANCE_IN.
[in] s12_a12 if arcmode is false, this is the distance between point 1 and point 2 (meters); otherwise it is the arc length between point 1 and point 2 (degrees); it can be signed.
[in] outmask a bitor'ed combination of NETGeographicLib::Mask values specifying which of the following parameters should be set.
[out] lat2 latitude of point 2 (degrees).
[out] lon2 longitude of point 2 (degrees); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::LONGITUDE.
[out] azi2 (forward) azimuth at point 2 (degrees).
[out] s12 distance between point 1 and point 2 (meters); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::DISTANCE.
[out] m12 reduced length of geodesic (meters); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::REDUCEDLENGTH.
[out] M12 geodesic scale of point 2 relative to point 1 (dimensionless); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::GEODESICSCALE.
[out] M21 geodesic scale of point 1 relative to point 2 (dimensionless); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::GEODESICSCALE.
[out] S12 area under the geodesic (meters2); requires that the GeodesicLineExact object was constructed with caps |= GeodesicLineExact::AREA.
Returns:
a12 arc length of between point 1 and point 2 (degrees).

The NETGeographicLib::Mask values possible for outmask are

  • outmask |= NETGeographicLib::Mask::LATITUDE for the latitude lat2;
  • outmask |= NETGeographicLib::Mask::LONGITUDE for the latitude lon2;
  • outmask |= NETGeographicLib::Mask::AZIMUTH for the latitude azi2;
  • outmask |= NETGeographicLib::Mask::DISTANCE for the distance s12;
  • outmask |= NETGeographicLib::Mask::REDUCEDLENGTH for the reduced length m12;
  • outmask |= NETGeographicLib::Mask::GEODESICSCALE for the geodesic scales M12 and M21;
  • outmask |= NETGeographicLib::Mask::AREA for the area S12;
  • outmask |= NETGeographicLib::Mask::ALL for all of the above.

Requesting a value which the GeodesicLineExact object is not capable of computing is not an error; the corresponding argument will not be altered. Note, however, that the arc length is always computed and returned as the function value.

NETGeographicLib::Mask NETGeographicLib::GeodesicLineExact::Capabilities (  ) 
Returns:
caps the computational capabilities that this object was constructed with. LATITUDE and AZIMUTH are always included.
bool NETGeographicLib::GeodesicLineExact::Capabilities ( NETGeographicLib::Mask  testcaps  ) 
Parameters:
[in] testcaps a set of bitor'ed GeodesicLineExact::mask values.
Returns:
true if the GeodesicLineExact object has all these capabilities.

Property Documentation

double NETGeographicLib::GeodesicLineExact::Latitude [get]
Returns:
lat1 the latitude of point 1 (degrees).

Definition at line 398 of file GeodesicLineExact.h.

double NETGeographicLib::GeodesicLineExact::Longitude [get]
Returns:
lon1 the longitude of point 1 (degrees).

Definition at line 403 of file GeodesicLineExact.h.

double NETGeographicLib::GeodesicLineExact::Azimuth [get]
Returns:
azi1 the azimuth (degrees) of the geodesic line at point 1.

Definition at line 408 of file GeodesicLineExact.h.

double NETGeographicLib::GeodesicLineExact::EquatorialAzimuth [get]
Returns:
azi0 the azimuth (degrees) of the geodesic line as it crosses the equator in a northward direction.

Definition at line 414 of file GeodesicLineExact.h.

double NETGeographicLib::GeodesicLineExact::EquatorialArc [get]
Returns:
a1 the arc length (degrees) between the northward equatorial crossing and point 1.

Definition at line 420 of file GeodesicLineExact.h.

double NETGeographicLib::GeodesicLineExact::MajorRadius [get]
Returns:
a the equatorial radius of the ellipsoid (meters). This is the value inherited from the GeodesicExact object used in the constructor.

Definition at line 427 of file GeodesicLineExact.h.

double NETGeographicLib::GeodesicLineExact::Flattening [get]
Returns:
f the flattening of the ellipsoid. This is the value inherited from the GeodesicExact object used in the constructor.

Definition at line 433 of file GeodesicLineExact.h.


The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends

Generated on 6 Oct 2014 for NETGeographicLib by  doxygen 1.6.1